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ABSTRACT 

This report describes a computer program designed to set up the secular determinant 

arising from an energy band calculation in the LCAO (Linear Combination of 

Atomic Orbitals) approximation. The program determines which transfer integrals 

vanish, and which are related; further, it computes the appropriate structure factor 

(which contains the momentum dependence) for each entry in the secular determi- 

nant. This program can handle arbitrary crystcl symmetry, unit cells with many in- 

equivalent atoms, interactions involving up to fourth-nearest neighbors, and a 

choice of s-, p-, and/or d-orbitals on the various inequivalent atoms. The transfer 

integralsare left as parameters to be determined from the eigenvalues corresponding 

to special symmetry points in the Brillouin zone. 
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LCAO SECULAR DETERMINANT PROGRAM 

This report describes a computer program designed to set up the secular determinant 

arising from an energy band calculation in the LCAO (Linear Combination of Atomic Orbitals) 

approximation.    The program can handle arbitrary crystal symmetry,   unit cells with many 

inequivalent atoms,   interactions involving up to fourth-nearest neighbors,   and a choice of S-, 

p-,   and/or d-orbitals on the various inequivalent atoms.    The transfer integrals are left as 

parameters to be determined from the eigenvalues corresponding to special symmetry points 

in the Brillouin zone.      These eigenvalues may be obtained,   for example,   by an augmented plane 

wave (APW) calculation. 

The input data must specify the allowed symmetry operations of the crystal,   the three non- 

coplanar lattice translations,   the positions of the inequivalent atoms,   the orbitals to be asso- 

ciated with these atoms,  and the relevant interactions.    The input is discussed in Sec. II;   the 

output is discussed in Sec. V. 

In principle,  the secular determinant could be written down immediately if all the transfer 

integrals were distinct.    However,   certain transfer integrals vanish,   others are identical (to 

within a sign),  and still others may be specified as linear combinations of remaining ones.    The 

various symmetry operations of the crystal generally carry a given transfer integral into a 

linear combination of other transfer integrals.    This situation arises when an orbital transforms 

into a linear combination of orbitals.    These operations yield relationships or equations involving 

the transfer integrals,   and may be used to reduce the number of parameters to a minimal set. 

A particularly simple example occurs when a transfer integral is transformed into the negative 

of itself.     It then vanishes. 

At this point,   it will be convenient to list certain variable names which recur throughout 

the program. 

NA Specifies the number of inequivalent atoms in unit cell. 

NS Specifies the number of symmorphic symmetry operations 
(.SSO.). 

NNS Specifies the number of nonsymmorphic symmetry operations 
(. NSSO.). 

This technique was first suggested by J.C. Slater and G.F. Koster, Phys. Rev. 94,  1498 (1954). 



TRS(1, J) A 3 x 3 matrix with each row specifying a non-coplanar lattice 

translation''   (the number in the first column specifies the 

x-coordinate,   etc.).    I   indicates the row,   and  J  indicates the 

column. 

SYM(I, J, K)     A matrix specifying a given symmetry operation.    I  indicates 

the symmetry operation under study.    For a fixed value of I 

(that is,   for a given symmetry operation),   J  and  K   indicate 

the row and column of a 4 x 4 submatrix that expresses ex- 

plicitly the given symmetry operation.    This matter is ex- 

plained in more detail in Sec. III. 

N(I, J) Specifies the extent of interactions considered between  I and J, 

where   I  and   J   indicate two inequivalent atoms;   e.g., 

If N  equals 0,  then self-interactions only are con- 
sidered (if relevant) 

If N  equals 1,   then interactions between atom I and 
all the nearest atoms of type  J  are to be considered 

If N  equals 2,   then atom I to next-nearest atoms of 
type  J  are to be considered 

Etc. 

NSYM(I) Explained along with subroutine NONSYM — if no atoms are re- 

lated by an . NSSO.,   then all NSYM(I) = 0. 

NORB(I) Specifies type of orbitals to be studied;   e.g., 

If NORB(I) = 1,   then only s-type orbitals on atom I 
are considered 

If NORB(I) = 2,   then s- and p-type orbitals on atom I 
are considered 

If NORB(I) = 3,   then s-,   p-,   and d-type orbitals on 
atom I are considered. 

NCHEM(I)        Specifies chemical nature of atom I;   e.g., 

NCHEM = 1, atom of chemical type 1 

NCHEM = 2, atom of chemical type 2 

NCHEM = 3,   atom of chemical type 3. 

NA1 Specifies number of inequivalent atoms of chemical type 1. 

NA2 Specifies number of inequivalent atoms of chemical type 2. 

NA3 Specifies number of inequivalent atoms of chemical type 3. 

(NA1  + NA2 + NA3 = NA) 

* Any distances supplied to the program should be in some appropriate reduced units, e.g.,  in multiples of a, 
where a  is any edge length of the unit cell. 



NSM(I, J) 

CLST 

NL 

I.I. 

LLM 

NM 

ML 

A matrix specifying the allowed .SSO.,   where  I  indicates 

atom number   I,   and  J   indicates . SSO.   number  J. 

NSM(1, J)      1 implies that J 
at atom 1,   i:; allowed5'' 

ih 
SSO.,   with origin 

,th 
NSM(I, J) - 0 implies that ,1      .SSO.,   with origin 
at atom I,   is not allowed. 

Specifies closest distance between any two atoms in lattice. 

It is used to compensate for rounding off errors in machine. 

One only needs to specify a rough estimate of CLST.    In- 

ternally,  CLST is reduced by a factor of 100. 

Specifies atom number NL.    Since the program deals with pairs 

of atoms when considering transfer integrals,   generally one 

atom is chosen (in turn) and then its interactions with the other 

atoms are considered.    Conventionally,   the former atom is 

associated with the label NL and is referred to as the "fixed" 

atom in this report,   while the latter atom is associated with 

the label NM and is referred to as the "variable" atom.    Con- 

sult Sec. II,   part (b) for more details on this point.     If there 

are no . NSSO.,   then the numbering system chosen may be 

arbitrary;   however,   if there is an . NSSO.,   the numbering sys- 

tem is fixed by this choice.    This point is amplified in Sec. IX. 

Specifies type of orbital on NL | see NORB(I)) 

LL = 1, s-type orbital 

LL = 2, p-type orbital 

LL =  3,   d-type orbital. 

Specifies which orbital,  given the type,   is being considered 

on NL. 

For LL = 1 and LLM = 1 

For LL = 2 and LLM = 1 

LLM = 2 

LLM = 3 

For LL = 3 and LLM = 1 

LLM = 2 

LLM = 3 

LLM = 4 

LLM = 5 

s-orbital is under study 

p  -orbital is under study 

p  -orbital is under study 

p  -orbital is under study 

d     -orbital is under study 
xy J 

d     -orbital is under study xz J 

d     -orbital is under study 
yz 

d  ?     ,-orbital is under study 
x -y 

d  ?-orbital is under study, 
z 

Specifies atom number NM. 

Specifies type of orbital on NM. 

* Although a lattice possesses a certain group symmetry, all the point operations of that group will carry the lat- 
tice into itself only at certain positions.   At other points, the symmetry will be more restricted.    At a general 
point,  there will be no symmetry. 



MLM 

NX 

NLEV 

Specifies which orbital,   given the type,   is being considered 

on NM. 

Specifies which level of atoms of inequivalent type NM.    There 

are whole classes of atoms associated with the number NM: 

those which are closest to our "fixed" atom NL (corresponding 

to an NX value of 1),  and those which are the next closest to 

atom NL (corresponding to an NX value of 2),   etc. 

Specifies which atom of type NM within a given level (or fixed 

value of NX) is being studied. 

There are limitations on certain of the above variables: 

NA< 18 

NA1 •$    6 

NA2 ^   6 

NA3 <    6 

NS^ 48 

NNS <:    1 

N^    4 

NCHEM ^    3 

NLEV ^ 10. 

These limitations may be modified by changing the appropriate initialization statements 

involved,*' so that the program conforms to the particular problem under consideration and to 

the storage capacity of the system used. 

In the following sections,   we shall consider each of the subroutines in more detail. 

I.      LCAO 

The calling sequence of the program is indicated in Fig. 1,   where the subroutine names are 

displayed.     LCAO reads in the input data using READ,   and calculates the effect of the various 

point symmetry operations (rotations and reflections) on the s-,   p-,   and d-orbitals in ORBIT. 

LCAO then calls POISON,   which computes the positions of all atoms considered in the particular 

program. 

READ 

3 
ZERO PARA HOPLES 

13-83-6048| 

POISON 
Fig. 1.    Calling sequence of subroutines. 

* These initializations are for ITF in LCAO, and for KKW and MISW in ZERO. 

j NNS and NCHEM would require more elaborate modifications. 



NL. LL, LLM, NXHC, NLVHCJ 

X 

* 

HERMITIAN CONJUGATE 
TRANSFER  INTEGRAL 

Following this,   LCAO sets up the correspondence between the transfer integrals and their 

Hermitian conjugate (H.C.).    A transfer integral is specified by the set of values:   NL,   LL,   LLM, 

NM,   ML,   MLM,  NX,  and NLEV.    The H.C. transfer integral would be specified by a set of 

values:   NM,   ML,   MLM,   NL,   LL,   LLM,   NXHC,  and NLVHCJ - where NXHC and NLVHCJ are 

to be determined (see Fig. 2).    As indicated in Fig. 2,   the position of the atom of type NL (asso- 

ciated with the labels NXHC,   NLKVHC) relative to the atom of type NM is known;   it is the nega- 

tive of the position of the atom of type NM (associated with the labels NX,   NLEV) relative to the 

atom of type NL.    Using this information,   LCAO locates the atom of type NL in the corresponding 

position.    This then determines the values of NXHC and NLVHCJ. 

This information is to be used by the program to 

reduce the number of independent parameters, using 

the equality between a transfer integral and its H.C. 

Here, one should recall, the program keeps one 

atom "fixed" when relating and parameterizing trans- 

fer integrals. In so doing, it generates relations be- 

tween transfer integrals only in a particular row in 

the secular determinant. However, a transfer in- 

tegral may be related to some other transfer inte- 

gral in the same column but different rows (i.e., 

NM considered "fixed"). 

Now, the given transfer integral is equal to its 

H.C. Further, the H.C. lies in the NM row, which 

contains the same relationships among its transfer 

integrals that the NM column contains among its 

corresponding transfer integrals. Hence, we can use the above equality to search for relation- 

ships in columns as well as in rows. 

Following the above calculations,   LCAO then begins setting up the secular determinant. 

LCAO chooses a particular entry in the secular determinant in the following expeditious order: 

LL,   ML,   chemical type of "fixed" atom,   chemical type of "variable" atoms,   NL,   NM,   LLM, 

and MLM.    A given transfer integral,   within a given entry,   is specified by NX and NLEV.    This 

specification is done either in TFSX or in NONSYM. 

Finally,   LCAO calls either TFSX or NONSYM.    Ordinarily,   TFSX will be called;  however, 

if the given entry is related to some previously considered entry by an . NSSO.,   then NONSYM is 

called.    The variable NSM determines which subroutine is called.    Its use is further explained 

in the description of NONSYM (Sec. IX). 

GIVEN TRANSFER 
INTEGRAL 

NM, ML. MLM 

\ NL.LL, LLM 

-X- 
NM, ML, MLM, NX, NLEV 

Fig. 2. Relation between given transfer 
integral and its Hermitian conjugate. 
Dashed line corresponds to unit cell 
boundary. 

II.    READ 

Following is the order in which the data cards are read in using subroutine RKAD. 

(a)    One card with the values of NA,   NS,   and NNS (integer format''').     These 
values are to be right adjusted in columns 1 to 10,   11 to 20,   and 21 to 30; 
i.e.,   if NA = 1,   then put a "1" in column 10;   if NA = 10,   then put a "1" 
in column 9 and a "0"  (or blank) in column 10. 

* Integer format — use no decimal points,  right adjusted;  decimal format— use decimal point, put number any- 
where in columns reserved. 



(b) NA cards listing the positions of the NA inequivalent atoms (in the 
assigned order).    Each card contains the x-,  y-,  and z-coordinates* 
of the atom in columns 1 to 10,   11 to 20,   and 21 to 30.    This is in 
decimal format.'    Note that card number 1 should have three 0's 
since,   by convention,  the first atom fixes the origin for our co- 
ordinate system. 

(c) Three cards specifying each of the three non-coplanar lattice transla- 
tions.    Each card contains the x-,   y-,  and z-components in the same 
decimal format as above. 

(d) Four x NS cards specifying the NS . SSO. 's.    Each set of four cards 
specifies one . SSO. — these are in the form of 4 x 4 matrices (see 
Fig. 3 in Sec. Ill for more details).    The first row of the . SSO. 
matrix is on the first card in the set,   the second is on the second 
card,   etc.    Again,   the same decimal format,   now (with four numbers) 
using columns 1 to 10,   11 to 20,   21 to 30,   and 31 to 40. 

(e) Four x NNS cards specifying the . NSSO. in the same way as in 
(d) above.    If NNS - 0,   then,  of course,  no cards are to be supplied. 

(f) NA cards specifying the array N.    There are NA entries on each 
card.    If we think of N  as an NA x NA matrix,   then the first card 
contains the first row,   etc.    The cards are in integer format,  but 
3 columns for each entry instead of 10 (using columns 1 to 3,   4 to 6, 
7 to 9,   etc.). 

(g) One card with NA entries specifying NSYM (see Sec. IX for more 
details).     If there is no . NSSO.,   this card may be blank.    The format 
is the same as (f). 

(h)    One card with NA entries specifying NORB;   same format as (f). 

(i)     One card with NA entries specifying NCHEM;   same format as (f). 

(j)     One card with three entries specifying NA1,   NA2,  and NA3;   same 
format as (a). 

(k)    NA cards each with NS entries specifying the array NSM.    Again, 
considering NSM as an NA x NS matrix,   the first card corresponds 
to the first row,   etc.    The cards are in integer format,   but 1 column 
for each entry. 

(1)    One card specifying CLST.    The format is decimal;  the columns 
reserved are  1 to 10. 

III.   ORBIT 

As mentioned previously,   ORBIT computes the effect of a given symmetry transformation 

on a given orbital. 

The transformations are read in as 4x4 matrices of the form shown 

in Fig. 3.    (R   is a 3 x 3 matrix representing the associated point trans- 
3 

formation, where    £    R..x. = x'..   The subscripts  i  and  j  label the Car- 
3=1 iJ 3 

|3-U-S050| 

- <T 

(R)           b 

c 

0 0       0        1 
tesian coordinates; a, b, and c are the three (Cartesian) components 

of the associated nonlattice translation. All transformations are active, 

i.e., one rotates the atoms, not the coordinate system.) If the trans- 

formation is an .SSO., then a = b = c = 0. The 3x3 matrix in the upper 

left-hand corner is then a conventional matrix representing the trans- 

formation in Cartesian coordinates,   e.g.,   reflection in x-y plane would have two entries of unity 

Fig. 3. Form of matrices 

representing given sym- 

metry operation. 

* Any distances supplied to the program should be in some appropriate reduced units, e.g.,  in multiples of a, where 

a   is any edge length of the unit cell. 

t Integer format— use no decimal points, right adjusted; decimal format — use decimal point, put number any- 

where in columns reserved. 



along the diagonal,   followed by an entry of minus unity,   with all other entries 0 ( in the 3x3 

matrix).    Before the representation of an .NSSO.   is described,  the term . NSSO.   should be de- 

fined,   since it differs from the usual convention. 

The term is best explained by an example.    The diamond structure has 48 symmetry opera- 

tions:    24 .SSO.,  and 24 .NSSO.,   where .NSSO. means nonsymmorphic symmetry operation in 

the conventional sense.    Any one of the operations corresponds to a rotation and/or reflection 

followed by nonlattice translation.    If we chose any one . NSSO. in the conventional sense and 

combined this operation with each of the 24 . SSO.,   then all 24 . NSSO. would be generated in 

the conventional sense.    In this report,an . NSSO. corresponds to any one of the conventional 

. NSSO.    Further,   the a,   b,   c,   in the 4X4 matrix representation of this .NSSO.,   correspond 

to the x-,  y-,   and z-components of the associated nonlattice translation,   respectively,   while 

R (the 3x3 matrix) is the associated point transformation. 

Now,   in general,   a given orbital transforms into a linear combination of orbitals of the 

same type,   either under an -SSO. or an . NSSO.  (of course,   the orbital is unaffected by the 

values of a,   b,   and  c   for an .NSSO.).    Hence,   a given transformation  A  generates a set of 

lxl,   3x3,   and 5X5 dimensional matrices indicating how the s-,   p-,   and d-orbitals trans- 

form,   respectively.    The form of each of these matrices will now be considered. 

The orbitals are defined in terms of the usual polar coordinate as: 

s = 1/2 -vTJr 

p    = (^/3/2 \TK) sin 9 cos <p 

p    = (N/3/2 \TTT) sine sinco 

p    = (N/T/2 \Tn) cose 

d      = (N/15/2 \ITT) sine costf since 
xy 

d       =  (\/ 15/2  \Mr)   sinO cos 6 cos to xz 

d      = (N/ 15/2 NT^T) sine cose sin to 
yz 

d   7     -, = (V 15/4 NTST) sin   e (cos   </? — sin   co) 2     2 
x -y 

d   2 - (\TT5~/4 \Tir) (3 cos2 9-1) 
z 

=  (N 15/4 \/~7r) (2 cos   9 - sin   9 cos   <p — sin   e sin   cf) 
A 

Under a transformation A,   s-orbitals transform into orbitals of type   s   (s — s).    Therefore, 

the lxl  matrix contains only the entry unity. 

The transformation of the p-orbitals is obvious,   e.g., 

A 
p    — A.,p    +A,,p    + A. ,p        etc. x 11   x 12ry 13rz 

Therefore,   the 3x3 matrix is just the matrix  A. 



For the d-orbitals,   the transformation is not as obvious,    e.g., 

C   |xy>  - c    £   AiiA2j  lij^  = C(A11A22 + A12A21>   I **> 

i.J 

+ c(A11A23 + A13A21)   |xz>   + c(A12A23 + A13A22)   | yz> 

+ (c/2) 2AtlA21   |x2>  + (c/2) 2A13A23  | z2> 

+ (c/2) 2A12A22   |y2> 

where c = N/ 1 5/2 N/7r   is the normalization constant for the d     -orbital which we have explicitly 

separated out.    We have proper normalization for the ket's corresponding to d      and d      auto- 
xz yz 

matically,   since d     ,   d        and d      all have the same normalization constant.    However,   the ' xy      xz yz 
ket's corresponding to the d  ->     ->- and d   ,-orbitals do not have proper normalization.    (Recall 

x  -y*- 7.L 

that this normalization constant is c/2 = 15/4 N/TF.)   Now,  under a given operation,   we will get 

some linear combination d  |x>+e|y>+f|zX   which can be expressed as 

alx   — y ^ + b | 3z   — r  > 

This is obviously not true for an arbitrary matrix,   but is true for a representation of crystal 

rotations and/or reflections.    Now,   if we require 

i   2 ^       2 A .  2 ,2        2.  , .  f    1    .,  2        2        2.1 dx    + ey    + fz    = a(x    — y   ) + b     (2z    — x    — y   ) 

then 

b       A a = d 
^3 

b 
— a = e 

2b   _ f 

^3   " 

Since we have three equations for two unknowns (a  and b),   we must have an equation relating d, 

e,  and  f so that these equations are consistent.    The form of the three equations indicates that 

this consistency equation is d + e = — f.    Hence,   a = (d — e)/2 and b = ("/T/2) f. 

Returning to the equation indicating the transformation of d      under A,   we see that 

d = 2A, .A~.,   c = 2A,-,A-,-1,   and f = 2A,,A^,  (separating out the normalization constant c/2). 11    21 12    22 13   23        r 6 '    ' 
Hence,  a = A . . A.,. — A . nA,,,  and b = \TT A. ,A,,.    We then have 11    21 12    22 13   23 

A 
d      - (A. .A,_ + A.,A_.) d 

xy 11    22 12   21      xy 

+ <AllA23 + A13A21)dxz 

+ (A12A23+A13A22)dyz 

* An orbital denoted as the ket is unnormalized;  that is, it is defined exactly as the corresponding d-orbital 
without the normalization constant. 



x -y 

+ ^A13A23d  2 

z 

d      -(A..A,, +A.,A,,,)d xz       v    11    32 12    31'    xy 

+ (A..A,, + A.,A,.) d 11    33 13    31      xz 

+ (A12A33 + A13A32)d 
yz 

+ (A11A31-A12A32)d  2     2 
x -y 

+ ^TA13A33d   2 

z 

A 
d      - (A,.A.., + A,,A     ) d 

yz 21    32 22    31      xy 

+ |A,,A„ + A     A,, ) d 21    33 23    31      xz 

+ (A22A33 + A23A32> dyz 

1  (A21A31 " A22A32» d   2     2 
x -y 

+ VTA23A33d2     . 
z 

In a similar fashion,   we got from 

k    x >  -k   V   (A    A     - A2.A    )   |ij> 
2j 

i.J 

where k - \/ 1 5/4 vir, 

d   2      2^  <AllA12-A21A22)dxy 
x   -y 

+ (A11A13-A21A23)dxz 

+ (A, ..A, . - A00A,,,) d 12    13 22    23      yz 

+ I(A121-A22l-Al22 + A222)d   2     2 
z -y 

•/3   ,,2        . 2 .   . 
+ _,A13-A23)d   2       . 

z 

Finally, 

n  |2z    - x    - y > - n   )]   (2A,.A,. - A, .A, - - A,.A,.)  | ij> J   ' t-> 3i    3j li    lj 2i    2j    '  •" 
i.j 



where n = "7 1 5/4 N/IF yields 

A    1 
dz2 " 7? <2A31A32 - AHA12 - A21A22> dxy 

+ ^(2A31A33-A11A13-A21A23)dxz 

1 
+ 7f <2A32A33 ~ A12A13 _ A22A23) dyz 

+ ^= (*A*   - Af4 - A*, - 2A3
2
2 • Af2 + A2

2
2) d^^ 

+ I   (2A323-Al23-A223)d   2       • z 

The above equations are then used in ORBIT to calculate the lxl,   3X3,   and 5x5 matrices 

generated by each symmetry operation. 

IV. POISON 

POISON computes the positions of all atoms relevant to the problem at hand,   and stores 

them in the array PNB.    For example,   if the program required interactions between atom 1 and 

up to next-nearest atoms of type 2 (N[l, 2] = 2),   then POISON would compute the positions (rela- 

tive to atom 1) of all atoms of type 2 nearest to 1 (assigning them an NX value of unity) and of 

all atoms of type 2 the next-nearest distance out (assigning them an NX value of 2). 

Starting with the position in the unit cell of the "variable" atom (in the above case,  atom 2), 

POISON generates a set of lattice sites using the lattice translations.    The sites so generated 

outline a parallelepiped with (2 x NMAX) + 3 sites on a side,  where NMAX is the largest NX 

value to be considered.    These positions are stored in the array PSN.    This is a sufficiently 
large number such that,   among these sites,   we may always find the relevant sites to be stored 

in PNB. 

POISON searches among the sites for the closest set.    It stores the number of atoms in 

this closest set (in the array NNNX),   the radial distance (in the array DNX),   and their positions 

(in the array PNB).    These sites are given an NX value of unity.    Then,   it sets the associated 

dummy positions PSN to 10  ,   thus eliminating this set of lattice sites from consideration when 

POISON searches for the set of next-closest sites.    Hence,   the same search routine can be used 

again;   that is,   POISON again looks for the set of closest lattice sites.    This set is then given an 

NX value of 2.    This process continues until POISON has computed the positions for NMAX levels 

of atoms. 

V. TFSX 

LCAO picked a pair of atoms (NL,   NM) and a corresponding pair of orbitals (LL,   LLM,   ML, 

MLM) which specify an entry in the secular determinant.    Within a given entry,   we must consider, 

in general,   many transfer integrals corresponding to a ring of n. n.,   n. n. n.,   etc.    Before param- 

eterizing these transfer integrals,   TFSX first computes the variables NO and NOX described 

below. ^ 

10 



Recall that an arbitrary atom in the lattice is completely specified by a set of numbers such 

as NL,   NM,   NX,  and NLEV.    This atom lies within some ring of atoms,   all of whom are the same 

distance from atom NL.    Now,  all these atoms may not have the same NM value;   further,   they 

may not even have the same NX value.    For example,   suppose there are two types of atoms in 

our ring:   types 3 and 5.    This ring may contain the closest type 3;   hence,   its NX value is unity. 

However,   we may have intervening (closer) atoms of type 5,   and its NX value may be 2.    Simi- 

larly,   there may be a different number of types 3 and 5 atoms in the ring.    The subscripted 

variables NOX and NO give,   respectively,   for each type of atom in the ring,   the level and the 

number of atoms.    If there are no atoms of a given type,   then NO - 0 for this type.    These 
numbers (NO,   NOX) are used later in ZERO (Sec. VI) in calculating to what position in the ring 

a given atom is transformed under some symmetry operation (since it is a point transforma- 

tion,   the distance from NL remains the same). 

Before continuing with the flow of the program it would be well to make a digression.    There 

are two separate outputs (all output statements other than error messages will be found in TFSX 

and NONSYM).    The first information that appears on output 1  is the relationships between the 

various transfer integrals and their H.C   (this was discussed in Sec. 1).    The same notation is 

used in the output as is used in this report.    Then,   the secular determinant is printed out.    A 

given entry is specified by the values of LL and ML,   the chemical type atom,   and the values of 

NL,   N M,   I.LM,   and MLM.    Within the entry,   there may be one or more parameters - each 

parameter corresponding to a transfer integral.    A given parameter may appear more than once 

(in the same or different entry),   indicating an equality between transfer integrals.     If a param- 

eter number is ever negative,   then that parameter is equal to the negative of the parameter as- 

sociated with the corresponding positive number,   e.g.,   P(—31) = -P(31).     Further,   associated 

with each parameter are the relative x-,   y-,   and z-coordinates of the NL and NM atoms (meas- 
ured from atom NL to atom NM).    One may then compute the structure factor associated with 

that parameter or transfer integral.     For example,   if we have 

P(31)       (1.00,   2.00,   0. 0) 

this corresponds to a structure factor e nkx^Zkya) multiplying parameter 31.     (Recall that all 

distances are given in units of some convenient length,   a.)   A blank entry indicates that all the 

transfer integrals in that entry are 0.    Which transfer integrals correspond to which parameters, 

and which transfer integrals are 0 are indicated on output 2.    Exactly how this is dime will be 

amplified later in this section as we discuss ZERO,   PARA,   and HOPLES. 

It should also be noted that the status of any given transfer integral (whether it has been 

parameterized or not,   whether it is 0 or not) is indicated by the value of the subscripted variable 
4 

ITF,   which is initially set a — 2 x 10     in Lt'AO.    Hence,   if some transfer integral has not been 
4 

considered,   its ITF value is — 2 x 10   ;   if found to be 0,   its ITF  is 0;   if a nonzero parameter, 
4 

its ITF value lies between ±10   .     If two transfer integrals are identical,   they have the same  ITF 

value;   if they are the same except for a minus sign,   the ITF values are the same except for a 

minus sign.    Further usage of ITF will be explained as the need arises. 

Proceeding with our program,   TFSX calls ZERO to see if the particular transfer integral 

under study is 0.    If so,   it prints out as explained above;   if not,   TFSX calls PARA.    PARA de- 

termines whether this transfer integral is equal to a linear combination of previously considered 

(hence,   parameterized) transfer integrals.     If so,   there arc various possibilities.     If there is 
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only one nonzero parameter,'   and the coefficient multiplying that parameter is ±1,   then the ITF 

values are equated to each other or to the negative of each other,   and that parameter with the 

corresponding coordinate of the NM atom is printed on output 1.    If the coefficient is not equal 

to ±1,   then (a) the relation between the transfer integrals is printed on output 2,   (b) the given 

transfer integral is assigned a new parameter number,   and (c) that parameter with the cor- 

responding coordinate of the NM atom is printed on output 1.     If there is more than one non- 

zero parameter,   then TFSX proceeds in a fashion similar to the case when we have a single 

coefficient not equal to ±1. 

PARA tries to relate the given transfer integral to linear combinations of parameters by 

looking at individual equations.     (Recall that each symmetry transformation generates a new 

equation.)   However,   it may be possible to find an expression relating the given transfer in- 

tegral to a linear combination of parameters by solving the entire set of equations generated by 

the transformations.    This possibility is investigated in HOPLES (Sec. VIII).    Hence,   if PARA 

is not able to relate the given transfer integral to a linear combination of parameters,   TFSX 

calls HOPLPIS.    There is an exception,   however.    The variable XNOP keeps track of the number 

of parameters encountered in the set of equations generated by all the transformations.    If XNOP 

is 0,   then the number of parameters is 0.    Hence,   these equations are unsolvable and there is 

nothing to be gained in calling HOPLES.    The given transfer integral is set equal to a new param- 

eter,   and this parameter with its corresponding position is printed on output 1.    TFSX indicates 

which transfer integral this parameter number corresponds to on output 2. 

HOPLES may find a set of linear equations which can be solved for the given transfer in- 

tegral in terms of some parameters.    This set is then printed on output 2,   the given transfer 

integral is set equal to a new parameter,   and this parameter with its corresponding position is 

printed on output 1.    If HOPLES does not find such a set of linear equations,   then TFSX sets 

the transfer integral equal to a new parameter and prints this relation on output 2.    Further, 

on output 1 the corresponding entry in the secular determinant is made. 

VI.   ZERO 

ZERO tests whether a given transfer integral is 0 or not.    If the integral is 0,   then it re- 

turns YESZ = 1;   otherwise,   it sets YESZ = 0.    Essentially,   it generates a set of equations using 

the NS symmetry operations.    As indicated above,   these are all of the form:   Given transfer 

integral equals linear combination of transfer integrals.    Then it tests these equations to find a 

pair where the respective right-hand sides are the negative of each other.    If such a pair exists, 

the transfer integral is 0. 
Before the above process takes place,   ZERO performs another function.    Having specified 

a transfer integral,   we then have specified a pair of atoms,   one of which is considered to be at 

the origin.    A given . SSO. will transform the atom not at the origin into some other (or the same) 

atom.    These . SSO. can be grouped according to the position to which the atom transforms.    This 

information is used to save a considerable amount of storage space.    It is also used for an en- 

tirely distinct reason in HOPLES (see Sec. VIII for further details). 

A word about notation:   KK or KKW is an array indicating how many . SSO. transform to some 

particular atom,  and MIS or MISW is an array indicating the corresponding . SSO. 

* Transfer integrals which have been previously considered, or parameterized, will be referred to as "parameters"; 
otherwise, they will be referred to as "variables." 
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VII. PARA 

PARA looks for an equation of the form:   Given transfer integral equals linear combination 

of parameters.    It uses KK and MIS from ZERO to group the equations;   then,   PARA generates 

the equations in each set.    Each transfer integral on the RHS undergoes a scries of tests.    First, 

PARA checks whether it is a parameter or a variable (by looking at the value of ITF).    If it is a 

parameter,   ITF is checked again to see if it is 0 or not;   if it is 0,   it is dropped from the right- 

hand side.    The same test indicates whether it is the negative of some other parameter;   if it is, 

the sign of the coefficient is changed and the parameter number is made positive.     In either case, 
the variable (NOTZER) which counts the number of parameters on the RHS of this equation is 

increased by unity,  and the coefficient and parameter number are loaded into two arrays (COEF 

and ITF2). 

On the other hand,   if the transfer integral is a variable,   it goes through a different process. 

First,   PARA checks whether it is proportional to the transfer integral on the  LI IS by generating 

a separate set of equations with the original transfer integral on the L1IS.    It scans this set for 

an equation of the form:   Original transfer integral equals coefficient times this variable.     If 

such an equation exists,   it moves the variable to the RIIS of our original equation by adjusting 

the value of ONK - the  coefficient of our original transfer integral.    Otherwise,   PARA goes on 

to generate yet another set of equations.    This time the variable is on the LI IS.     Each equation 

is tested to see if the RHS is a linear combination of parameters.    If a variable is ever en- 

countered on the RHS,   that equation is immediately dropped.    If it succeeds in this,   then the 

variable is converted into the linear combination of parameters by loading the appropriate num- 

bers into COEF and ITF2.     If no such equation exists,   then a variable NVAR counting the number 

of variables is increased by 1.    After each transfer integral on the RHS of the original equation 

has gone through the above process,   NVAR is tested.     If NVAR is 0,   PARA checks the value of 

ONE.     If ONE ^ 0,   PARA proceeds;   but,   if ONE is 0,   PARA goes on to a new equation.*    As- 

suming ONI", is not 0,   PARA then checks the value of NOTZER.     If NOTZER and NVAR are 

both 0,   then we have nothing on the RIIS.    Our transfer integral is 0,   anci YESZ is set      1.     If 

NOTZER  >1,   then YESLC is set = 1.    This indicates to TFSX that PARA has .succeeded in 

finding an equation relating the given transfer integral to a linear combination of parameters. 

PARA then transfers back to TFSX. 

The other possibility is that NVAR is nonzero.     PARA then checks NOTZER,     If NOTZER 

is 0,   i.e.,   we have all variables on the LHS,   PARA considers a new equation;   if it is not ZERO, 

then we have a mixture of variables and parameters on the RHS.    The variable XNOP (to be ex- 

plained below) is then increased by unity,   and PARA continues to a new equation. 

Finally,   suppose PARA goes through the entire collection of sets of equations without trans- 

ferring back to TFSX.    The value of XNOP indicates whether or not all the equations are of the 

form:   Transfer integral equals linear combination of variables only.    In this case,   there is no 

reason to call HOPLES.    XNOP communicates this to TFSX.    However,   if XNOP > 0,   then TFSX 

calls HOPLES. 

VIII. HOPLES 

The first half of HOPLES is essentially a duplicate of PARA,   the only distinction being that 

instead of discarding a particular equation in a given set,   HOPLES retains it.    The coefficient 

* If ONE is 0 and NVAR is 0, at best we have a relation among parameters which is not useful at the moment. 
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on the LHS is stored in the array ONEK for each equation in the set.    Similarly,   the arrays 

ITFV,   COEFV,   ITFP,  COEFP,  and NOTZR contain,   respectively,   the variable numbers,   coef- 

ficients of these variables,   parameter numbers,   coefficients of parameters,  and the number of 

parameters for each equation.    Note that the variables are numbered internally within a given 

set of equations (the first variable encountered in a set is given the number 1,   etc.). 

HOPLES proceeds to look at this set of equations and selects the linearly independent ones. 

HOPLFS checks whether a given equation is linearly dependent with respect to any of the other 

equations.    If it is not,   then it is stored as a linearly independent equation.    This checking 

process is accomplished by comparing the given equation with the other equations in the set in 

the following manner: 

(a) Ensuring there is at least one variable with a nonzero coefficient in 
the given equation. (If this is not the case, then we have a relation 
among parameters only,   and the equation is discarded.) 

(b) Finding the coefficient of the variable in the equation being compared. 

(c) Taking the ratio of this coefficient with the corresponding coefficient 
in the given equation.    (If the variable is missing in the equation 
being compared,   the ratio is 0.) 

(d) Comparing this ratio with the other ratios generated from corresponding 
coefficients. 

Now,   if the ratios are all equal,   the two equations are linearly dependent;   otherwise,   they 

are linearly independent. 

One should note that there is a special case where the ratios are not actually compared. 

Suppose some original ratio has been found;   it will be 0 or some finite number.    Now,   if a 

subsequent ratio would involve dividing by 0,   it is,   of course,   never computed and the two equa- 

tions are linearly independent. 

The array LIE indicates whether a given equation is linearly independent (LIE = 1) or not 

(LIE = 0).    When the above process has been completed,   the LIE'S are summed.    This gives 

the number of linearly independent equations. 

This set of equations can fall into one of three categories:    (a) number of equations (NUMEQ1) 

is less than the number of variables (NUMV + 1) where we include the transfer integral on the LHS 

as a variable;   (b) NUMEQ1 =  (NUMV + 1);  and (c) NUMEQ1 > (NUMV + 1).    In turn,   this gives us 

three cases into which the sets fall:    (1) all sets are of type (a);   (2) some (possibly none) sets are 

of type (a),   and some of type (b);   and (3) at least one set is of type (c).    For case (1),   HOPLES 
4 

returns the variable NUMEQ with the value 2x10   to indicate this;   for case (2),   it returns the 

smallest NUMEQ1 as the variable NUMEQ.    Further,   HOPLES returns the set of equations 

(variables,   coefficients of variables,   parameters,   coefficients of parameters) and NUMVAR, 

the number of variables. 
If a set of type (c) is ever encountered,   HOPLES immediately transfers control back to TFSX 

along with the same information indicated after case (2).    TFSX then prints out these equations 

with the message that they should be checked for consistency. 

IX.   NONSYM 

If a given "fixed" atom I is related to a previously considered "fixed" atom J by an . NSSO., 

then LCAO calls NONSYM. The equation NSYM(I) = J carries this relationship. Its argument I 
equals the number of the atom being considered;   its value J  equals the number of the atom to 
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which the former is related by the given . NSSO.    If there is no such relation,   then NSYM(I) = 0. 

One must not use the .NSSO. that relates  I  to .1   until  J  has had all its transfer integrals param- 

eterized.    This means that the value of J  must be less than the value of I.    Hence,   it is neces- 

sary to exercise some care in numbering the inequivalent atoms. 

Fig. 4.    TiO„ rutile structure. 

#  TITANIUM   ATOMS 

O OXYGEN   ATOMS 

|3-13-B051 ] 

TiO, is a case in point;   it has a rutile structure (see Fig. 4) with U.,   as its space group. 

If one chooses as the . NSSO.  rotation by -90°  in the x-y plane,   followed (or preceded) by the 

translation (- -•=- - j - j),   this then requires the numbering system indicated in Fig. 4,   since 

2—1,   6—5,   5—4,   and 4 — 3 under the above . NSSO. 

The first half of NONSYM consists of taking the relative coordinates between the given pair 

of atoms and rotating these coordinates,   using the . NSSO.    Then,   NONSYM searches for an atom 

in that position relative to the corresponding previously considered "fixed" atom. 

For example,   in the above case when IX"AO considers any transfer integral with atom 2 at 

the origin,   it goes to NONSYM.    There,   the relative coordinates are rotated by—90°.    Then, 

NONSYM searches for an atom with these coordinates relative to atom 1.    Note that the atom 

not at the origin need not have the same inequivalent atom number in both cases (although,   of 

course,   it must be of the same chemical type). 
Having located the corresponding atom not at the origin (which would be specified by a set 

of NM,   NX,   and NLKV values),   NONSYM calculated the linear combination of transfer integrals 

generated by the . NSSO.     It then tests each associated ITF value.     If ITF is 0 or if the coefficient 

of that transfer integral is 0,   then that parameter is not considered.     If its ITF and coefficient 

are nonzero, then their values are stored in the arrays 1TFNS and COEFNS,   respectively.     From 

here,   the treatment is the same as in TFSX when the given transfer integral has been found to be 

a linear combination of parameters. 
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